Q1, (Jan 2006, Q1)

(i) (a) $\operatorname{Po}(2): 1-\mathrm{P}(\leq 3)$

$$
=0.1429
$$

(b) $\operatorname{Po}(2 / 3): e^{-2 / 3} \frac{\left(\frac{2}{3}\right)^{2}}{2!}$

$$
=0.114
$$

(ii) Foxes may congregate so not independent

Q2, (Jan 2007, Q5i,ii)

Q3, (Jun 2008, Q6a)

(a) $\mathrm{Po}(2.375)$

$$
\begin{aligned}
e^{-2375}\left(\frac{2.375^{3}}{3!}+\frac{2.374^{4}}{4!}\right) & {[=0.2079+0.1233] } \\
= & \mathbf{0 . 3 3 1 0}
\end{aligned}
$$

M1
Po(19/8) stated or implied
One correct Poisson formula, not tables
Complete correct expression, including addition
4
Answer, a.r.t. 0.331
[SR: $\mathrm{Po}(2)$ or $\mathrm{Po}(2.4)$ and tables, M1]

Q4, (Jan 2009, Q3)

(i)	(a) $=0.657$ (b) $0.42 e^{-0.42}=0.276$	$\begin{array}{\|ll\|} \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 3 \end{array}$	Correct formula for $R=0$ or 1 $\mathrm{P}(0)$, a.r.t. 0.657 $\mathrm{P}(1)$, a.r.t. 0.276
(ii)	$\begin{aligned} & \text { Po } 2.1): \\ & 1-\mathrm{P}(\leq 3)=1-0.8386 \end{aligned}$	M1 M1 A1	Po(2.1) stated or implied Tables or formula, e.g. 0.8386 or 0.6496 or 0.9379 or complement; Answer, in range [0.161, 0.162]
(iii)		B2	At least 3 separate bars, all decreasing Allow histogram. Allow convex $\mathrm{P}(0)<\mathrm{P}(1)$ but otherwise OK: B1 Curve: B1 [no hint of normal allowed]

Q5, (Jan 2010, Q9i,ii)

(i)	$1-\mathrm{P}(\leq 7)=1-0.9881=0.0119$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Allow for 0.0038 or 0.0335 Answer, a.r.t. 0.0119
(ii)	$\begin{aligned} & \operatorname{Po}(12) \\ & \mathrm{P}(\leq 14)-\mathrm{P}(\leq 12) \\ & {[0.7720-0.5760]} \\ & \end{aligned}$	M1 M1 A1 3	$\mathrm{Po}(12)$ stated or implied Formula, 2 consecutive correct terms, or tables, e.g. . 0905 or .3104 or .1629 Answer, art 0.196

Q6, (Jun 2010, Q1)

ALevelMathsRevision.com

Q7, (Jan 2012, Q8i-iii)
(i)
Location of bacteria must be independent - the position of one
M1 | "Found independently": M1. Allow "are independent", "singly" does not affect that of another Context needed somewhere in answer.
A1 Correct explanation, not just of "singly", e.g. not "must not group together". No extra or wrong conditions, but allow both "singly" and "independently". Right explanation, not "independent": M1A0

Examples

$\alpha \quad$ Number of bacteria occurring in a particular volume is independent of the number in another interval of the same volume.
Number in one volume occurs randomly.
$\beta \quad$ Bacteria are distributed independently from one another. This means that they cannot be in groups.
$\gamma \quad$ Position of each bacterium must be independent of the position of other bacteria. Not well modelled by Poisson if they tended to form groups, they must not be influenced by the surrounding bacteria or certain conditions (e,g, heat).
$\delta \quad$ Bacteria need to be independent. The results of one cannot influence the result of another. M1A0
$\varepsilon \quad$ Bacteria must occur independently, so the state of one bacterium has no effect on any other bacteria. M1A0
$\varsigma \quad$ Probability of bacteria must be independent, they cannot affect the probability of another bacterium occurring M1Al

$\eta \quad$ Bacteria must occur independently, so if one occurs it can't cause more to appear
(ii)

$1-\mathrm{P}(\leq 4)[=1-0.8912]=\mathbf{0 . 1 0 8 8}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Allow M1 for $1-.9580[=0.042]$ or wrong $\lambda .0 .8912$ 0.109 or 0.1088 or better
$\begin{aligned} & \operatorname{Po}(0.925) \\ & e^{-0.925} \frac{0.925^{2}}{2!} \quad=\mathbf{0 . 1 6 9}(64) \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Po(0.925) stated or implied [37/40] Correct Po formula for $r=2$, any λ, can be implied by: Answer $0.17(0)$ or 0.1696 or better

ALevelMathsRevision.com

(i)	Crystals must occur independently of one another		Allow interpreted, or "randomly" but nothing else. Must be contextualised; no other answers included.	Ignore "singly" (meaningless in this context). But allow "probability... is independent"
(ii)	$e^{-32} \frac{3.2^{5}}{5!}=0.114(0)$	M1 A1 [2]	Formula, or .0608 or .1781 or .1075 or .1203 (tables) Answer a.r.t. 0.114, implies both marks	
(iii)	$\begin{aligned} & \operatorname{Po}(2.368) \\ & 1-e^{-2.388}\left(1+2.368+\frac{2.368^{2}}{2}\right) \\ & =0.4219 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Po($0.74 \times 3.2)$ stated or implied 1 - correct Poisson terms, their λ, allow ± 1 term Answer, a.r.t. 0.422 , implies all 3 marks	Allow for 0.75×3.2 etc, e.g. Po(2.4) Don't allow second M1 from λ in tables, e.g. if MR, treat as E-1. If no working: don't give M1A0

Q9, (Jun 2013, Q9)				
(i)	Constant average rate; or [*] same statement plus "breakdowns independent" Otherwise it means that they occur at exactly regular intervals	B1 B1 2	State "average" or equiv, "random" or "uniform". Correct explanation	No extras apart from independence (ignore "singly") Can't get from [*]
(ii)	No because breakdowns more likely in rush hours, etc	B1 1	Any plausible reason for either "yes" or "no" that shows understanding of what the statistical concept means	Not "equally likely". Not reason for (in)dependence, unless [*], which needs both conditions if affirmed
(iii)	$\begin{aligned} & \hline 13 \\ & 0.0739 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \mathbf{2} \end{gathered}$	0.074 or a.r.t. 0.0739. Marks independent	
(iv)	$\begin{array}{ll} e^{-\lambda} \frac{\lambda^{2}}{2!}=0.0072 & \\ \lambda=\sqrt{ }\left(0.0144 e^{\lambda}\right) & \\ & =0.12 e^{\lambda / 2} \\ 8.5 \rightarrow 8.4126 ; & 8.6 \rightarrow 8.8440 \end{array}$ Therefore solution between 8.5 and 8.6	M1* M1dep A1 A1 A1 5	Correct formula $=$ their 0.0072 seen Rearrange $e^{-\lambda}$ and square root, to get $\lambda=\mathrm{f}(\lambda)$ Correctly obtain AG, with $k=0.5$ Two correct evaluations to 4 dp at least All completely correct and deduction stated	Allow even if left with e^{λ} or $\mathrm{e}^{-\lambda}$ or exact equivalent 4 dp explicitly required CWO, except allow if only 3 SF

ALevelMathsRevision.com

Q10, (Jun 2014, Q4)

(i)	Snakes must occur independently of one another	B1 [1]	Contextualised ("snakes" must be mentioned); not just "singly" but allow both independent and singly. Allow explanation, e.g. "Occurrence of one snake doesn't affect occurrences of others". Allow "snakes must occur randomly". Otherwise, more than one condition, "e.g. "randomly, independently, singly and at constant rate": 0 .
(ii)	$\begin{aligned} & 1-\mathrm{P}(\leq 5) \\ & =1-0.7851 \quad=\mathbf{0 . 2 1 4 9} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 [2] } \end{gathered}$	Give M1 for $0.3712,0.1107$ or 0.2307 . Answer 0.7851 is M0. Answer, a.r.t. 0.215
(iii)	$\begin{aligned} & \operatorname{Po}(3.08) \\ & \begin{aligned} e^{-3.08}\left(\frac{3.08^{2}}{2!}+\frac{3.08^{3}}{3!}\right) \quad[=0.2180+0.2238] \\ =\mathbf{0 . 4 4 1 8} \end{aligned} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { M1 } \\ \text { A1ft } \\ \text { A1 } \\ {[4]} \end{gathered}$	$\operatorname{Po}(3.08)$ stated or implied. [Just $\lambda=3.08$ is M0 unless Poisson later.] Correct formula for $\mathrm{Po}(r>0)$ used at least once, can be implied Completely correct formula for their λ (not 4), can be implied Final answer, a.r.t. 0.442 No working: last 3 marks either 0 or 3 , no "nearly right".

Q11, (Jun 2015, Q2)

(i)		That they don't occur regularly or to a fixed pattern, or are unpredictable
(ii)	Dead rabbits occur independently, i.e., one occurrence does not affect the probability of another or at constant average rate, i.e. mean number uniform along the whole road	
(iii)	$\operatorname{Po(2.75)}$ $e^{-2.75} \frac{2.75^{3}}{3!}=\mathbf{0 . 2 2 1 5}$	

Q12, (Jun 2016, Q4)

$\frac{\lambda^{4}}{4!} e^{-\lambda}=\frac{\lambda^{5}}{5!} e^{-\lambda}$		M1
$\frac{\lambda^{4}}{4!}=\frac{\lambda^{5}}{5!}$	$\Rightarrow \boldsymbol{\lambda}=\mathbf{5}$	A1
M1		
A1		
	$\mathbf{0 . 1 7 5}(46)$	B1

Poisson formula used [not just quoted] correctly once
This equation or exact equivalent, needs $e^{-\lambda}$ seen somewhere
Correct method for cancelling $e^{-\lambda}$
Solve to get $\lambda=5$ only, www
5
Probability, in range $[0.175,0.176]$, allow from $\lambda=5$ from wrong working
E.g. "no pattern": expect to be right E.g. "doesn't affect": expect to be wrong

Not "constant probability"
One right, one wrong, e.g. independent + " $n p<$ $5, n q<5 "$: max 1
Only "Singly" stated, implied or used: max B1
Right condition but explanation shows it's wrong: B0B0
Needs evidence for this
Must be seen
Formula required, so no formula \Rightarrow M0A0

ALevelMathsRevision.com

Q13, (Jun 2016, Q6i-ii)

(i)	Cars pass independently of one another and at constant average rate	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	"Independently", refer to cars. Not "constant rate", "constant probability". No extra conditions. Ignore all references to "singly" (which is wrong in this context!)
(ii) α	$\begin{aligned} & \mathrm{P}(\leq 7)-\mathrm{P}(\leq 3)=0.6728-0.1118 \\ &=0.561(0) \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A2 } \\ & \hline \end{aligned}$	3	0.680 or $0.681: \mathrm{M} 1 \mathrm{~A} 0$ Allow from calculator, no working 0.4491 or $0.5679: \mathrm{M} 1 \mathrm{~A} 1$ Allow from calculator, no working
or β	$\begin{aligned} \mathrm{P}(4)+\mathrm{P}(5)+\mathrm{P}(6) & +\mathrm{P}(7) \\ =0.1118+0.1454 & +0.1575+0.1462 \\ & =\mathbf{0 . 5 6 1}(0) \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	Correct formula for ≥ 3 probabilities from $\operatorname{Po}(6.5)$ added, can be implied 3,4 or 5 correct terms (e.g. $\mathrm{P}(3)=0.06880$), can be algebraic or implied Answer, a.r.t. 0.561

